A High-Assurance Automatically Synthesized Evaluator for Machine-checked (Proactively) Secure Multi-party Computation Protocols
Published in ACM Conference on Computer and Communications Security (CCS) London, UK 2019, 2019
Recommended citation: Karim Eldefrawy and Vitor Pereira, A High-Assurance Automatically Synthesized Evaluator for Machine-checked (Proactively) Secure Multi-party Computation Protocols. ACM Conference on Computer and Communications Security (CCS) London, UK 2019
Abstract: Secure Multiparty Computation (MPC) enables a group of nn distrusting parties to jointly compute a function using private inputs. MPC guarantees correctness of computation and confidentiality of inputs if no more than a threshold tt of the parties are corrupted. Proactive MPC (PMPC) addresses the stronger threat model of a mobile adversary that controls a changing set of parties (but only up to tt at any instant), and may eventually corrupt all nn parties over a long time.
This paper takes a first stab at developing high-assurance implementations of (P)MPC. We formalize in EasyCrypt, a tool-assisted framework for building high-confidence cryptographic proofs, several abstract and reusable variations of secret sharing and of (P)MPC protocols building on them. Using those, we prove a series of abstract theorems for the proactive setting. We implement and perform computer-checked security proofs of concrete instantiations of the required (abstract) protocols in EasyCrypt.
We also develop a new tool-chain to extract high-assurance executable implementations of protocols formalized and verified in EasyCrypt. Our tool-chain uses Why as an intermediate tool, and enables us to extract executable code from our (P)MPC formalizations. We conduct an evaluation of the extracted executables by comparing their performance to performance of manually implemented versions using Python-based Charm framework for prototyping cryptographic schemes. We argue that the small overhead of our high-assurance executables is a reasonable price to pay for the increased confidence about their correctness and security.
